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1 Additional Experiments and Results

Additional qualitative reconstruction comparisons We provide additional
qualitative comparison for the reconstruction task for both datasets DTU and
Tanks and Temples in Figures 1. For DTU (3 input views), we show meshes
generated by NeuS [14], per-scene fine-tuned SparseNeuS [8], VolRecon [11]
and ours. In most cases, NeuS struggles to generate complete and meaningful
reconstructions. SparseNeuS-ft lacks details and is overly smooth. VolRecon
reconstructions can be incomplete and noisy, although having more details than
SparseNeuS. Our method demonstrates the best performance in terms of surface
details and completeness.
Novel view synthesis comparison on full-images We report in Table 1 quan-
titative results for the full images on the DTU dataset. Our method outperform
per-scene optimization methods in rendering when evaluating on Full-Images in
almost all settings. Our method only ranks second in 3 input-view setting in
terms of PSNR compared to the generalizable NeRF method PixelNeRF [21] most
likely because it benefits from its data prior when dealing with the background
of DTU scenes.

Additional qualitative novel view comparisons We provide additional qual-
itative comparisons between our method and SOTA methods FreeNeRF [18] and
RegNeRF [10] in novel view synthesis in the 3 input view setting (Figure 2) and
the 6 input view setting (Figure 3).

Additional qualitative novel view results We provide rendering examples of
all 15 scans of the DTU dataset for the novel view synthesis task under the 3
input-view setting in Figure 4.

2 Additional Ablation Studies

SfM vs. MVS point cloud We remind that one main motivation to exploit
MVS for sparse views neural reconstruction is that it takes only 41 seconds for
* These authors contributed equally to this work
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Fig. 1: Additional qualitative comparison of surface reconstructions on DTU from 3
views. SparseNeus and VolRecon use data priors, whereas we do not.

3 views, and 180 seconds for 9 views in DTU. In terms of chamfer distance,
reconstruction performance drops by 45% in DTU if we use SfM instead of MVS
(Ours SfM 1.47, Ours MVS 1.01 ↓). MVS carries richer supervision (pts, colors
& normals), and SfM point clouds are 21 times sparser than MVS in average for
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Full-Image DTU Evaluation Full-Image PSNR ↑ Full-Image SSIM ↑ Full-Image LPIPS ↓ Full-Image Average ↓
3 views 6 views 9 views 3 views 6 views 9 views 3 views 6 views 9 views 3 views 6 views 9 views

SRF [2] 15.84 17.77 18.56 0.532 0.616 0.652 0.482 0.401 0.359 0.207 0.162 0.145
PixelNeRF [21] 18.74 21.02 22.23 0.618 0.684 0.714 0.401 0.340 0.323 0.154 0.119 0.105
MVSNerf [1] 16.33 18.26 20.32 0.602 0.695 0.735 0.385 0.321 0.280 0.184 0.146 0.114
SRF ft [2] 16.06 18.69 19.97 0.550 0.657 0.678 0.431 0.353 0.325 0.196 0.143 0.125
PixelNeRF ft [21] 17.38 21.52 21.67 0.548 0.670 0.680 0.456 0.351 0.338 0.185 0.121 0.117
MVSNeRF ft [1] 16.26 18.22 20.32 0.601 0.694 0.736 0.384 0.319 0.278 0.185 0.146 0.113
DietNeRF [3] 10.01 18.70 22.16 0.354 0.668 0.740 0.574 0.336 0.277 0.383 0.149 0.098
RegNerf [10] 15.33 19.10 22.30 0.621 0.757 0.823 0.341 0.233 0.184 0.189 0.118 0.079
FreeNerf [18] 18.02 22.39 24.2 0.68 0.779 0.833 0.318 0.24 0.187 0.146 0.094 0.068
Ours (SculptoSparse) 18.37 22.37 25.00 0.740 0.833 0.880 0.258 0.179 0.148 0.136 0.052 0.058

Table 1: Quantitative comparison on DTU. We present the PSNR, SSIM, VGG LPIPS
and Average scores of full images. Best scores are in bold, second best are underlined
and third best are in italic.

Downsampling ratio Chamfer distance ↓
No downsampling 1.01

by x2 1.08
by x4 1.10
by x8 1.14

Table 2: Effect of uniformly downsampling the MVS point cloud leveraged by our
method. We ablate on one set of 3 views for all scenes in DTU for reconstruction. Our
method is only affected slightly by sparser MVS point clouds.

the DTU reconstruction benchmark.

MVS point cloud density In this study, we want to see to what extent our
method relies on the density of the leveraged MVS point cloud. To this end,
we uniformly downsample the MVS point cloud in all scenes by factors ranging
from 2 to 8. We report results in Table 2. Downsampling the point cloud only
seems to affect our method slightly, as the quality of reconstructions remains
relatively good. This shows that our method is not overly relying on the density
of the MVS point cloud, thanks in part to our progressive hash and Taylor based
regularizations. We note that, as witnessed by numerical results in Table 1 in the
main paper, in the DTU reconstruction benchmark, we achieved large improve-
ments over SOTA on shiny scenes (110, 37), and outperformed SOTA even in
scene (83) with least dense MVS (80% less than the DTU average point cloud size).

Additional qualitative ablation results We show more qualitative ablations
on additional DTU scenes for the different components of our method in Figure 5
as well as a comparison of our Taylor based losses against baseline losses in
Figure 6.

Full view ablation Figure 7 shows an ablation of our losses while densifying
views, using DTU scene 114. Performance improves with more views. The con-
tribution of our regularizations reduces the denser the views, as the baseline
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Fig. 2: Qualitative comparison of novel view on DTU from 3 views.

becomes less prone to overfitting. We perform on par with reconstruction SOTA
in full views.



SparseCraft 5

Fig. 3: Qualitative comparison of novel views on DTU from 6 views.

Varying the number of input views We perform an experiment to see the
performance of our method in surface reconstruction when varying the number
of views from 2 to 6. Please note that for a meaningful comparison, we evaluate
meshes after cleaning with the masks of 6 views. We evaluate on one set of 3
views for all scenes of DTU, and we report their average in Table 3. Our method
shows steady improvement when increasing the number of views. We also found
that our method can provide encouraging results even under the very extreme
case of using only 2 input views.
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Fig. 4: Examples of novel views generated with our method from 3 input views in DTU.
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Fig. 5: Qualitative ablation of different components of our method. We report Chamfer
scores of reconstructions.

# of views Chamfer distance ↓
2 views 1.69
3 views 1.17
4 views 1.06
5 views 0.98
6 views 0.89

Table 3: Effect of increasing the number of views on reconstruction. For a meaningful
comparison, we evaluate meshes after cleaning with masks of 6 views. We evaluate on
one set of 3 views for all scenes of DTU, and we report their average. Our method
shows steady improvement when increasing the number of views, and we can achieve a
good Chamfer score even at 2 views.

Training Time when increasing input views The training of per-scene
optimization based implicit reconstruction baselines (e.g . SOTA method in the
dense setting NeuralAngelo) under fully dense input views in DTU can take up
to/ more than 16 hours depending on the scene. Differently, MVS supervision,
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Fig. 6: Qualitative ablation of our Taylor expansion based losses, compared to applying
direct standard losses. We disable the MVS color loss in this comparison. We show both
the generated meshes and their surface normals. We also report Chamfer scores of
reconstructions.

σϵ values Chamfer distance ↓
ϵ/2 1.01
ϵ 1.03

ϵ/4 1.08
2 · ϵ 1.05

Fixed 0.01 1.10
Table 4: Effect of σ used for sampling the query points around MVS point cloud. We
evaluate on one set of 3 views for all scenes in DTU for reconstruction. As we use a
progressive strategy that involves using progressive hash encoding as well as progressive
numerical gradient step ϵ, we find that it is better to use a progressive sampling standard
deviation that is proportionate to the numerical gradient step rather than having it
fixed during training.

which is incidentally highly informative and less noisy under such dense settings,
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Fig. 7: Ablation of our losses under increasing number of views for DTU scan 114.

allows us to maintain very practical training times. In our experiments under
full DTU views (49 images), our model converges within 40 to 50 minutes. We
note that MVS running time is about 19 minutes in this setting. Hence, our
accumulated overall compute time is drastically lower than NeuralAngelo’s. We
remind that the focus of our work is addressing the few-shot setting. Under 3
views, MVS running time is roughly 41 seconds and training time is about 10
minutes in DTU.
Taylor query points sampling To make use of our proposed dual Taylor
expansion based losses, we need to sample query points around the input MVS
point cloud following a normal distribution centered at the MVS points, using
a standard deviation σ. We sample 10 query points for each MVS point ev-
ery 500 iterations using a KD tree. Query points should be at the vicinity of
MVS points to enforce local linearity of the SDF function close to the surface.
However, as we use a progressive strategy where gradients are estimated with
numerically using a decreasing step size ϵ, sampling too close to the surface
at the beginning of the training may not give the best results. We find in our
experiments, as reported in Table 4, that it is better to use a sampling stan-
dard deviation that is proportionate to the numerical gradient step rather than
having it fixed during training. We find a value of ϵ/2 yields the best performance.

Gradients computation method We study the effect of using numerical
gradients against analytical gradients, as our proposed Taylor-based losses also
rely on these computations. Differently from NeuralAngelo [7] that computes
numerical gradients to estimate surface normals, we additionally use gradients
to enforce linear behavior of the SDF function near the surface through our
proposed Taylor-based regularization. We find that using numerical gradients
yields better results, as presented in Table 5.
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Gradient Computation Chamfer distance ↓
Numerical 1.01
Analytical 1.13

Table 5: Effect of using numerical gradients vs. analytical gradients. We evaluate on
one set of 3 views for all scenes in DTU for reconstruction. We find that using numerical
gradients for our learning, including our near the surface SDF linearization strategy,
yields better results.

Prog. enc. scheduling Chamfer distance ↓
80% 1.01
60% 1.04
20% 1.05

Table 6: Effect of scheduling the progressive encoding throughout the training, i.e.
how many iterations until the finest hash level is activated. We evaluate on one set of 3
views for all scenes in DTU for reconstruction. We find that in the sparse setting of 3
input views, it is better to keep the progressive encoding for 80% of training iterations.

Progressive hash encoding scheduling Table 6 shows the impact of scheduling
the hash encoding on the quality of reconstructions. We find that while our loss
based regularization can lead to good surfaces, using progressive encoding acts as
an additional regularization and helps to avoid artifacts in the reconstruction, by
ensuring that the geometry model does not prematurely overfit to fine information.
In addition, as our proposed losses are geometric in nature, they can sacrifice
rendering quality at the expense of good reconstruction. Combining them with
the progressive encoding leads to superior rendering quality than using only the
progressive hash encoding.

3 Additional Experimental Details

Fig. 8: Cameras in DTU benchmarks.

Camera pose distributions Following standard protocols in previous methods,
we experimented with the two camera distributions of the DTU reconstruction
benchmark (SparseNeus) (Set-0 & Set-1), and the DTU novel view benchmark



SparseCraft 11

(RegNeRF). The baseline in the latter is wider, as illustrated in fig.8. We out-
performed SOTA in both settings (see Tables 1 and 2 in the main paper). We
also experimented with the 360 configurations of BMVS. The latter are very
challenging for a learning prior-free method like ours. While prior-free methods
shows major failures, we perform mostly on par with methods using external
deep 3D priors (e.g . Figure 3 in the main paper).

While we use three datasets in this work, namely DTU [4], BlendedMVS [19]
and Tanks and Temples [5], we adhere to two different protocols for DTU de-
pending on the nature of the task: novel view synthesis or surface reconstruction.

DTU Dataset The DTU dataset [4] is a large-scale multi-view dataset that
consists of 124 scans of different objects. Each scene has 49–64 views of resolution
1600 × 1200. Generalizable methods such as PixelNeRF [21] for neural rendering
and SparseNeuS [8] for surface reconstruction use a split of training scenes and
test scenes to study the “pre-training & per-scene fine-tuning” setting for few-shot
neural rendering and surface reconstruction respectively. Differently from these,
our method does not require pre-training. We follow the protocol of [10] to
optimize directly on the 15 test scenes for the novel view synthesis task, and we
use another set of 15 test scenes chosen by [8] for the reconstruction task. The
test scan IDs for novel view synthesis are: 8, 21, 30, 31, 34, 38, 40, 41, 45, 55, 63,
82, 103, 110, and 114. The test scan IDs for surface reconstruction are: 24, 37,
40, 55, 63, 65, 69, 83, 97, 105, 106, 110, 114, 118 and 122.

For novel view synthesis, in each scan, the images with the following IDs
(counting from “0”) are used as the input views: 25, 22, 28, 40, 44, 48, 0, 8, 13.
The first 3 and 6 image IDs correspond to the input views in 3- and 6-view
settings, respectively. The images with IDs 1, 2, 9, 10, 11, 12, 14, 15, 23, 24, 26,
27, 29, 30, 31, 32, 33, 34, 35, 41, 42, 43, 45, 46, 47 serve as the novel views for
evaluation. The remaining images are excluded due to wrong exposure. We follow
previous methods [10, 12, 13, 17, 18, 21] in using a 4× downsampled resolution,
resulting in 300× 400 pixels for each image.

For surface reconstruction, for each scan, there are two sets of 3 views with
the following IDs used as the input views. Set-0: 23, 24 and 33, then Set-1: 42,
43 and 44 for 14 scans, except scan 37 (1, 8 and 9). We use the training views in
their original resolution without downsampling.

BlendedMVS Dataset BlendedMVS [19] is a large-scale dataset for generalized
multi-view stereo that consists of a variety of 113 scenes including architectures,
sculptures and small objects with complex backgrounds. We use 5 challenging
scenes from the low-res set, where each scene has 31–143 images captured at 768
× 576. The chosen IDs for the selected scenes are : Dog : 5, 6, 8; Bear: 25, 43,
102; Man: 2, 3, 7; Sculpture: 7, 16, 17; Stone: 6, 9, 10. We use the training views
in their original resolution without downsampling.
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Tanks and Temples Dataset Tanks and Temples Dataset [5] includes large-
scale indoor/outdoor scenes. Each scene contains 156 to 1107 high resolution
images captured using a hand-held monocular RGB camera. To show that our
method can handle large scale outdoor scenes, we selected 4 scenes: Family,
Ignatius, Horse and Truck. These scenes are originally captured from more
than 150 views. We uniformly sample 24 views and compare the result of our
method to several methods used for dense views reconstruction: NeuralAngelo [7],
generalizable sparse views reconstruction trained on DTU: VolRecon [11] and
a sparse views per-scene optimization method leveraging deep MVS networks:
S-VolSDF [16].

Metrics For the novel view synthesis task, to evaluate the PSNR scores, we
assume that the maximum pixel value is 1 and use the formula −10 · log10(MSE).
Additionally, we utilize the scikit-image API1 to compute the structural similarity
index measure (SSIM) score and the pip package LPIPS to use a learned VGG
model to compute the learned perceptual image patch similarity (LPIPS) score.

For the surface reconstruction task, we measure the Chamfer Distances of
the predicted meshes w.r.t. ground truth point clouds of DTU scans. We use the
same evaluation script used by SparseNeuS [8] that cleans the generated meshes
using provided object masks, then the script that evaluates the Chamfer distance
between sampled points on the generated meshes and the ground truth point
cloud to output distances in both ways, then give the overall average that is
usually reported. In addition, since two sets of 3 different views are used for each
scan, we average the results between the two resulting meshes from each set of
images and report it in the comparison as done in previous methods [8, 11].

Masked evaluation for novel view synthesis As reported by [10], due to the
background evaluation bias, we follow their protocol of masked evaluation for
DTU, where we use object masks and compute PSNR only within the mask. For
SSIM and LPIPS, we use the masks to composite the predicted object-of-interest
onto a black background before calculating the metrics.

4 Additional Implementation Details

Hash encoding Our hash resolution spans from 22 to 211 with 32 levels, with
a channel size of 2. The maximum number of hash entries of each resolution is
219. We find in our experiments that the hash encoding configuration used by
NeuralAngelo [7] overfits due to the large number of parameters, especially in
the few shot setting. Thus, by reducing the number of maximum hash entries
and resolution range, we can avoid overfitting while vastly reducing the number
of parameters as well as affording to use more hash levels.

Color network Following [7], we model the color with intrinsic decomposition
into diffuse and specular components. In our case, this design allows us to lever-
1 https://scikit-image.org/docs/stable/auto_examples/transform/plot_ssim.html

https://scikit-image.org/docs/stable/auto_examples/transform/plot_ssim.html
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age the MVS color labels as supervision for the diffuse components. We assume
here that the resulting MVS point cloud’s color is view independent, since it
is aggregated from all input views. The final rendered color C ∈ R3 is the sum
of the diffuse color Cd and specular color Cs: C = Φ(Cd + Cs), where Φ is the
Sigmoid function used to normalize predictions into the range of 0 to 1. The
albedo component predicts RGB values Cd ∈ R3 that are view independent. It
gets the point encoding and geometrical features from the SDF MLP as input.
The specular component predicts intensity values Cs ∈ R, which are view depen-
dent, in order to capture reflection, varying shadow, and exposure changes. The
single channel design allows for flexibility in capturing specular highlights, expo-
sure variations, and moving shadows are often intensity changes [7]. In addition
to the point encoding and SDF geometrical features, the specular component
is additionally conditioned on the surface normals computed with numerical
gradients of the SDF network and the viewing direction encoded using spheri-
cal harmonics, differently from NeuralAngelo that uses reflection direction instead.

Training rays and samples We use a dynamic ray sampling strategy for the
training of our method, where the number of training rays is initialized as 256
and increases with a momentum of 0.1 based on whether cast rays are occluded.
The number of samples per ray is set to 1024. For sampling, we use a CUDA
implemented occupancy grid [6] with a resolution of 256 for both the foreground
and background models.

Architecture We use a learnable variance for the transparency transformation
defined in [15], that is initialized with a value of 0.3. Its learning rate is set to
0.001. The SDF MLP uses 1 hidden of size 64 with softplus activation, and we
use spherical initialization following prior work [7,14,20]. The density network
for the background model is also defined as an MLP with 1 hidden layer of size
64, with ReLU activation, and its color network is an MLP with 3 hidden layers
of size 64. Overall, the number of trainable parameters of our model is about
20M, as opposed to the 300M+ parameters used in NeuralAngelo.

Training protocol We start the optimization with the coarsest level and enable
the next one every 100 iterations when the exponentially decreasing step size
ϵ equals its grid cell size. When inactive, the hash level feature is set to zero.
We use AdamW [9] and train for 4000 iterations for 3 input views. We scale
this number proportionally to the number of views for 6 and 9 inputs. We use
a learning rate of 1× 10−2, and we decay it by 10 after 2000 iterations. We set
loss weight as: Leik : 0.1, Ltay(p) : 0.5. For losses Ltay(p) and Lcol(q), we increase
the weight linearly from 0.01 to 1. We found that using strong MVS supervision
at the coarse stage of the model leads to unstable optimization, and that we
benefit more from this loss at the finer stages. Query points (Q) used for Taylor
based losses are sampled every 500 iterations using a Kd-Tree of the MVS point
cloud with σϵ = ϵ/2. Similarly to [7, 14], we use the NeRF++ model [22]. The
background uses a hash whose resolutions span from 22 to 26 with 16 levels.
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Data preparation For the reconstruction task experiments, we use the prepro-
cessed data provided by NeuS [14] which includes input images, object masks,
calibration data and scaling matrices that transform the object of interest to
be within a unit sphere. This applies to both DTU [4] and BlendedMVS [19].
For Tanks and Temples dataset [5] we use the official dataset images and run
calibration using COLMAP on the selected 24 images.

For novel view synthesis, we use the data provided by PixelNeRF [21] and
reprocess them to be in the same format used by NeuS [14]. To get the MVS point
cloud that we leverage in our method, we use the official command line interface of
COLMAP by sequentially running: feature_extractor, exhaustive_matcher,
image_undistorter, patch_match_stereo, stereo_fusion on the input views,
using the available camera matrices as part of the standard evaluation bench-
marks.
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