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Abstract. We present a novel approach for recovering 3D shape and
view dependent appearance from a few colored images, enabling efficient
3D reconstruction and novel view synthesis. Our method learns an implicit
neural representation in the form of a Signed Distance Function (SDF) and
a radiance field. The model is trained progressively through ray marching
enabled volumetric rendering, and regularized with learning-free multi-
view stereo (MVS) cues. Key to our contribution is a novel implicit neural
shape function learning strategy that encourages our SDF field to be
as linear as possible near the level-set, hence robustifying the training
against noise emanating from the supervision and regularization signals.
Without using any pretrained priors, our method, called SparseCraft,
achieves state-of-the-art performances both in novel-view synthesis and
reconstruction from sparse views in standard benchmarks, while requiring
less than 10 minutes for training. Project page: sparsecraft.github.io

1 Introduction

Replicating the 3D world around us digitally in a faithful manner is a long-
standing problem that has prompted substantive research in computer vision and
graphics alike, with countless downstream applications. While current solutions
can provide impressive results, many of them still rely on abundantly informative
input, be it in quality (e.g . high resolution imagery, depth sensors) or quantity
(e.g . dense arrays of views). However, due to many constrained scenarios (e.g .
out-of-the-studio, low budget, etc.) and in the interest of wider applicability, the
community (e.g . [5, 21, 40, 45, 48, 51, 58, 84]) is actively seeking solutions that can
deliver under minimal input.

Given a few colored images, we aim to capture both the shape and appearance
of the observed object or scene. In practice, we seek metrically accurate 3D
reconstruction, and photo-realistic novel view synthesis. In this regard, traditional
computational photogrammetry combines structure from motion (SfM) and
multi-view stereo (MVS) [61,62] to provide calibration and triangulate an explicit
geometry based on matching. However, it can lead to noisy and incomplete meshes
in challenging and non Lambertian scenarios. On the other hand, deep learning
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based implicit neural representations (INR) have emerged as a powerful tool
for 3D modelling [43,72]. They have shown ability to learn both detailed shape
and radiance though image supervised differentiable volumetric rendering from
dense image arrays [72,86]. Learning such accurate implicit shape representations
remains challenging when only a few images are available. Current methods in
the literature [37, 40, 58] rely on learned data priors across many training scenes,
by conditioning the implicit representation on spatially local features obtained
from the sparse input images through generalizable encoders. These can suffer
nonetheless from out of distribution generalization issues, and typically require
substantial and expensive calibrated multi-view data for training.

Differently, we advocate to fit a neural signed distance (SDF) and radiance
functions self-supervisedly to the images. Using a progressively learned hash
encoding [44] provides regularization and a more stable and efficient training. We
use MVS geometry and color cues to further regularize this challenging learning
task. Notice that these cues are readily available, as photogrammetry is typically
required to obtain the calibration needed for learning INRs.

Unfortunately, our training is facing noisy labels or phenomena that can be
interpreted as such: e.g . The MVS geometry can be noisy, and the volumetric
rendering supervision can be imprecise due to imperfect calibration, and the
inherent bias of geometry based volumetric rendering [10]. To alleviate these
challenges, we propose a novel loss rooted in Occam’s razor principle. We focus
on the surface i.e. near the MVS samples, as it is the most critical region
in our learning. We hypothesize that excess non-linearity [67] there can lead
to overfitting on the noise. Hence, we encourage our SDF to be as linear as
possible near the MVS samples, by making the function approximate its first
order Taylor expansion, and we integrate the MVS point and normal supervision
in this linearization (Section 3.2). We show empirically that this loss leads to
considerable improvement in our method, as compared to the previous methods,
and also a directly MVS supervised baseline.

We obtain state-of-the-art performances in both novel view synthesis and
reconstruction using standard metrics, as-well-as superior qualitative results
to previous methods, without using any pre-learned priors, and within shorter
training times. In summary, our main contributions are:
• Few-shot 3D reconstruction and novel view synthesis without any pre-learned
data priors.
• Leveraging a progressive multi-resolution hash learning strategy in this context.
• A framework, that we call SparseCraft, for harnessing all MVS data: points,
normals to regularize the SDF, and color to regularize the diffuse.
• Our novel Taylor expansion inspired losses to regularize SDF learning from
sparse multi-view imagery.

2 Related Work

Multi-View Stereo Conventional MVS can be classified based on scene represen-
tation: volumetric [28,29,63], point cloud [11,30], and depth map based [12,62,82].
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Recently, there has been a preference for depth map based methods due to
their versatility, dividing the problem into depth map estimation and fusion
stages [12,62]. Subsequently, Poisson reconstruction [24] is applied to the fused
point cloud to produce a watertight mesh. Despite significant advancements,
extreme scenarios such as minimal input can still prove challenging for such meth-
ods, often resulting in incomplete and inaccurate reconstructions. Nevertheless,
we demonstrate that by judiciously leveraging the incomplete fused point cloud
generated from one such method (COLMAP [61]), our approach surpasses the
state-of-the-art in multi-view few-shot reconstruction.
Implicit Neural Representations Implicit Neural fields employ deep neural
networks to model 2D or 3D data as continuous functions, overcoming many of
the limitations of explicit ones (e.g . meshes [19,23,71] and point clouds [1,9,25]) in
modelling shape, radiance and light fields (e.g . [3,16,31,32,43,72,86]). The seminal
work (NeRF) [43], which combines volume rendering and implicit representations,
has paved the way for learning diverse tasks, including novel view synthesis [41,43],
3D generation [17, 54], deformation [52,55, 57], and video rendering [8, 34, 36, 80].
More recently, attention was shed on implicit surface reconstruction, with a
focus on single-stage optimization and robust representation potential [83, 87].
This was improved through novel weight functions involving SDFs for color
accumulation during volumetric rendering [72,86]. However, persistent challenges
such as geometric bias arising from discrete sampling and other factors [10,92]
still remain.

Efforts have been directed towards addressing the time-intensive training
associated with these methods. i.e., NeRF-based work [44,60,68] introduced voxel-
grid features. Subsequently, other literature [74,78] extended them to surfaces.
Lately, Neuralangelo [35] proposed leveraging multi-resolution hash grids with
numerical gradient computation and a topology warm-up strategy for neural
surface reconstruction. While achieving high-fidelity geometry from dense images,
it comes with a considerable training time cost. Inspired by the latter, our work
leverages numerical gradients and hash encoding, and additionally employs an
occupancy grid for sampling, to strike a balance between reconstruction quality
and training speed.
Novel-View from Sparse Input Existing work has tackled this task by incor-
porating additional information, such as normalization-flow [45], perceptual [90]
and diffusion-based [79] regularization, depth supervision [7,59,76], and enforcing
cross-view semantic consistency [18]. Conversely, another line of work [4,6,88]
strives to develop transferable models by training on a large, curated dataset,
eschewing the use of external models. Recent investigations posit that geom-
etry is a pivotal factor in few-shot neural rendering, advocating for geometry
regularization [45] to enhance performance. However, these methods require
resource-intensive pre-training on tailored multi-view datasets [4, 6, 88] or em-
ploying costly training-time patch rendering [18, 45], thus introducing significant
overhead.

Conversely, other approaches propose regularization strategies during single
scene fitting. These include frequency encoding regularization [84], entropy con-
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Fig. 1: Overview: In this toy example, we illustrate inference given 4 samples {r(t)}
on a ray r (where the last hash resolution is not active yet). Dashed arrows symbolize
losses operating mid-training. SparseCraft leverages differentiable volumetric rendering
to learn a SDF based implicit representation given a few images, using MVS cues as
regularization ( losses in Red).

straints on density [26], utilizing a mixture density model [65] or exploiting flipped
reflection rays as augmentation [64]. In this work, we demonstrate that explicit
regularization, aimed at linearizing the signed distance function in proximity to
the surface with guidance from an incomplete point cloud derived from a classical
MVS method, along with the incorporation of a progressive hash encoding, not
only enhances the surface reconstruction of our SDF based method, but also
enables it to surpass state-of-the-art NeRF-based approaches in rendering quality
in the few-shot object-centric setting.
Reconstruction from Sparse Input For this task, geometric priors [10, 50, 70,
89,91] have been proposed to enhance reconstruction in the single scene fitting
setting. However, these methods are slow to train and still display artifacts and
failures. Generalizable novel view synthesis models [4, 39,53,66,69,73,88] can
be repurposed for reconstruction by carefully adjusting the density threshold for
extraction. However, their reconstructions tend to be noisy and not as robust
as reconstruction methods. Generalizable surface reconstruction methods (from
images [40, 58] as well as point clouds [2, 47, 49, 53]) are still prone to failure
for out-of-distribution scenes/views. Another noteworthy work [77] employs the
neural rendering of an implicit reconstruction method to improve the MVS
performance of deep MVS models in the few-shot setting. In contrast to all the
aforementioned work, our rapidly trained method achieves state-of-the-art results
for the few-shot reconstruction task without relying on pre-learned priors.

3 Method

Given a few input colored images {Ii}Ni=1, our goal is to recover the shape
and appearance of the observation. We achieve this by learning implicit shape
and radiance functions simultaneously. We model the shape S with a SDF f
parameterized with a neural network fθ. We model the radiance as a view
direction d and location x dependent 3-channel color function g parameterized
through a neural network gϕ, i.e. g(x,d) = c where c ∈ [0, 1]3. The inferred
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shape Ŝ can be obtained at test time as the zero level set of the learned SDF
fθ at convergence: Ŝ = {x ∈ R3 | fθ(x) = 0}. Concurrently, given a target
new view point, a novel image Î can be generated through ray-wise volumetric
rendering [22] per pixel, using the converged neural SDF and radiance fields fθ
and gϕ respectively.

3.1 Learning Implicit Neural Shape and Radiance

The NeRF [43] framework enables learning a volumetric scene representation
through a synthesis and compare procedure between generated and ground-truth
pixel values. Let us assume a ray r(t) = o+ td, where o is the camera origin and
d the ray direction. The color C of the pixel corresponding to a ray r can be
generated through integration along the ray:

C(r) =

∫
T (t)σ(r(t))c(r(t),d)dt. (1)

where σ(r(t)) denotes volume density, which represents a differential opacity
signaling the amount of radiance accumulated by a ray passing through the point
r(t). T (t) denotes transparency, i.e. the accumulated transmittance along the
ray until t, which can be derived from density accordingly:

T (t) = exp

(
−
∫ t

σ(r(s))ds

)
. (2)

As extracting geometry by thresholding density σ yields suboptimal and noisy
results, recent literature proposed to involve a SDF f in the volumetric rendering
equation, by defining a function Ψ that transforms the SDF into density σ(r(t))
for Yariv et al . [86], the weighting function T (t)σ(r(t)) in the case of Wang et
al . [72], and most recently the transparency T (t) in the work by Wang et al . [75].
We follow here the latter representation, where the transformation Ψ is chosen
to satisfy monotony and boundary conditions fit for T (t):

T (t) = Ψs(f(r(t))) =
1

1 + exp(−sf(r(t)))
, (3)

where s controls the slope of the transformation. In practice, the integral in
Equation 1 is approximated using discrete samples {ti} with the quadrature
rule [42]. Using our SDF and radiance neural networks fθ and gϕ, the inferred
color of a ray then writes:

C(r) =
∑

Ti

(
1− e−σi(ti+1−ti)

)
gϕ(r(ti),d), (4)

where the transparency and density are obtained from the SDF network [75].
Model parameters θ and ϕ can be optimized at this stage using the following
empirical risk minimization:

min
θ,ϕ

E
r∼R
t∼Tr

Lvol(r) + Leik(r(t)), (5)
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where R symbolizes a distribution over training rays among all training images,
and Tr is the sample distribution along a ray r. Lvol is the photometric recon-
struction loss based on discretized volumetric rendering (Equation 4), while Leik
is the Eikonal regularization [13] that helps avoid the all zero SDF degenerate
solution:

Lvol(r) = ||C(r)− Cgt(r)||1. (6)

Leik(r(t)) = (||∇f(r(t))||2 − 1)
2
. (7)

3.2 Regularization with Stereopsis Cues

Learning a SDF and radiance field conjointly from few images can be an under-
constrained problem, which underpins the need for additional regularization.
Fitting 3D INRs to images entails typically an automatic calibration preprocess.
The latter estimates camera intrinsic and extrinsic parameters, which are key to
performing 3D consistent volumetric rendering and/or ray marching. The main
method of choice in this context remains COLMAP [61,62] (SfM + MVS). Hence,
without additional overhead, we can acquire the dense fused MVS point cloud,
with its point-wise normal estimations and color labels using the sparse input
images. We propose subsequently to regularize our training with these additional
cues. We note that while MVS points have been exploited before in learning
NeRFs from sparse [7, 59, 76] and dense images [81], and SDF based radiance
from dense images [21], we propose differently here to use these cues in learning
SDF based radiance in the sparse setting. Additionally, and to the best of our
knowledge, our work is also the first to suggest leveraging the color and normal
MVS labels, and not only the point spatial locations.

However, the MVS surface samples come with a considerable deal of noise,
while also being incomplete, due to inaccuracies in the matching and triangulation
process that further intensify in our sparse input setting, along with MVS
related limitations when dealing with challenging surfaces (e.g . textureless and
reflective surfaces). Furthermore, we can argue that even our volumetric rendering
based supervision is prone to noise. As a matter of fact, this noise can be
manifested in e.g . 3D inconsistent supervision emanating from imprecision in the
calibration, and also in the inherent bias [81] arising from volumetric integration
based geometry modeling, as opposed to e.g . a pinpoint root rasterization based
geometry modelling. We propose a novel strategy to remedy these challenges in
the following.
Taylor Expansion Based Geometric Regularization We focus on the level
set of our SDF, where the most crucial knowledge for rendering concentrates.
We hypothesize that encouraging our SDF to be as linear as possible there can
robustify it against the noise introduced above as intuitively, overly complex
models are more likely to overfit on noisy samples [56]. We derive a loss that
can achieve this linearization efficiently, while integrating MVS point and normal
label supervision seamlessly.

We denote by P ⊂ R3×M the MVS point cloud obtained from input images
{Ii}. We note that each sample p ∈ P comes with a normal nMVS(p) and color
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cMVS(p) estimation. We generate a pool of query points near the surface by
sampling around the MVS points following a normal distribution, i.e. {q ∼
N (p, σϵI3)} where the standard deviation σϵ decreases proportionately with
the progressive learning step ϵ during training. We recompute subsequently the
nearest point p in P for each sample q, thus forming the following set of training
pairs:

Q := {(q,p),p = min
v∈P

||v − q||2}. (8)

Given a pair (q,p) in Q, let us consider the first order Taylor polynomial
approximation of our SDF fθ around q, and evaluate it at p, secure in the
knowledge that it is in the direct vicinity of q:

fθ(p) ≈ fθ(q) +∇fθ(q)
⊤(p− q). (9)

Leveraging the constraint that points p need to belong to the zero level set, we
can derive the following loss:

Ltay(q) = ||fθ(q) +∇fθ(q)
⊤(p− q)||2. (10)

Note that this loss encourages both our function to have minimal curvature
near the surface, and MVS points to coincide with the level set.

Multiplying by gradient ∇fθ and rearranging Equation 9 leads to the following
approximation:

p ≈ q− fθ(q) ·
∇fθ(q)

||∇fθ(q)||22
. (11)

Hence, our loss Ltay(q) can also be interpreted as supervising a single step of
Newton root finding on the SDF fθ, initialized at q, with its nearest neighbor in
the MVS point cloud p.

Let us consider now the Taylor approximation of our SDF around p conversely,
as evaluated at query q:

fθ(q) ≈ fθ(p) +∇fθ(p)
⊤(q− p). (12)

We can leverage here the additional constraint that the normalized gradient of the
SDF needs to approximate the surface normal, i.e. nMVS(p) ≈ ∇fθ(p)/||∇fθ(p)||2
. Thus, we can derive the loss:

Ltay(p) = ||fθ(q)− ||∇fθ(p)||2 · nMVS(p)
⊤(q− p)||2. (13)

Table 3 and Figure 7 show the benefit of using these Taylor losses as opposed to
standard direct supervision.
Color Regularization The color labels provided by MVS are averaged from the
input images, so we propose to use them as a supervision to the diffuse component
of our radiance. Hence, as illustrated in Figure 1, and following [35], our color
network consists of two small MLPs gdiff

ϕ and gspec
ϕ modelling view independent

and view dependent radiance respectively:

gϕ(x,d) := gspec
ϕ (x,Fθ(x),∇fθ(x)/||∇fθ(x)||2,d) + gdiff

ϕ (x,Fθ(x)), (14)
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where Fθ is a feature extracted from the geometry network fθ. Our color regular-
ization applied at MVS points then writes:

Lcol(p) = ||gdiff
ϕ (p)− cMVS(p)||1. (15)

Finally, we can learn our implicit neural representation through the following
combined optimization:

min
θ,ϕ

E
r∼R
t∼Tr

(q,p)∼Q

Lvol(r) + Leik(r(t)) + Ltay(q) + Ltay(p) + Lcol(p). (16)

Figure 1 provides a visual summary of our method.

3.3 Fast Progressive Learning

Our implementation of the INR network builds on the seminal work in [44].
Our SDF fθ consists of an efficiently CUDA implemented multi-resolution hash
encoding followed by a small MLP, and the radiance network gϕ consists of two
small MLPs. We use an explicit occupancy grid that guides the sampling along
rays (i.e. t ∼ Tr) for inference. This combination allows for fast training.

While progressive learning through positional encoding or learnable features
was introduced previously for learning NeRFs from dense (e.g . [38]) and sparse
(e.g . [84]) images, and SDF based radiance from dense images (e.g . [35]), we
propose here to explore this strategy for SDF based radiance learning in the
sparse setting for the first time to the best of our knowledge. Differently from
Neuralangelo [35], we use the progressive hash encoding to regularize the training
in the few shot setting. Hence, it is applied throughout the whole training, rather
than its use as a warm-up strategy in [35]. We note that progressively activating
hash resolutions during training reduces overfitting and improves the stability
of the training in our experiments, and also improves the rendering quality. We
also use numerical gradient to approximate derivatives, which allows to back-
propagate gradients to more hash cells in the training. The step size of the
derivative computation ϵ is scheduled progressively in concordance with the hash
dimensions, as recommended in [35]. Details of the scheduling of our progressive
learning are reported in the supplementary material.

4 Implementation Details

We build upon the instant-nsr-pl [15] implementation of Neuralangelo and utilize
Nerfacc’s [33] accelerated sampling with occupancy grid. Our hash resolution spans
from 22 to 211 with 32 levels, and we employ a multi-level optimization strategy.
We use AdamW optimizer with a learning rate schedule and a combination of
losses with varying weights. For more details on the implementation, including
the architecture of our MLPs, training protocol, and cues sampling, please refer
to the supplementary material.
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Fig. 2: Qualitative comparison of surface reconstruction in DTU from 3 views.
SparseNeuS and VolRecon use deep data-driven priors, whereas we do
not.

Fig. 3: Qualitative comparison of surface
reconstruction in BMVS from 3 views. Fig. 4: Qualitative comparison of sur-

face reconstruction on T&T from 24
uniformly sampled views.

5 Experiments
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Fig. 5: Qualitative comparison of novel
view synthesis in DTU from 3 views.

Fig. 6: Qualitative comparison of novel
view synthesis in DTU from 6 views.

Scan 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean ↓
COLMAP [61] 0.9 2.89 1.63 1.08 2.18 1.94 1.61 1.3 2.34 1.28 1.1 1.42 0.76 1.17 1.14 1.52
IDR [87] 4.01 6.4 3.52 1.91 3.96 2.36 4.85 1.62 6.37 5.97 1.23 4.73 0.91 1.72 1.26 3.39
VolSDF [86] 4.03 4.21 6.12 0.91 8.24 1.73 2.74 1.82 5.14 3.09 2.08 4.81 0.6 3.51 2.18 3.41
UNISURF [46] 5.08 7.18 3.96 5.3 4.61 2.24 3.94 3.14 5.63 3.4 5.09 6.38 2.98 4.05 2.81 4.39
NeuS [72] 4.57 4.49 3.97 4.32 4.63 1.95 4.68 3.83 4.15 2.5 1.52 6.47 1.26 5.57 6.11 4.00
SparseNeuS ft [40] 1.29 2.27 1.57 0.88 1.61 1.86 1.06 1.27 1.42 1.07 0.99 0.87 0.54 1.15 1.18 1.27
MVSNeRF [4] 1.96 3.27 2.54 1.93 2.57 2.71 1.82 1.72 2.29 1.75 1.72 1.47 1.29 2.09 2.26 2.09
PixelNerf [88] 5.13 8.07 5.85 4.4 7.11 4.64 5.68 6.76 9.05 6.11 3.95 5.92 6.26 6.89 6.93 6.28
SparseNeuS infer [40] 1.68 3.06 2.25 1.1 2.37 2.18 1.28 1.47 1.8 1.23 1.19 1.17 0.75 1.56 1.55 1.64
VolRecon [58] 1.2 2.59 1.56 1.08 1.43 1.92 1.11 1.48 1.42 1.05 1.19 1.38 0.74 1.23 1.27 1.38
ReTR [37] 1.05 2.31 1.44 0.98 1.18 1.52 0.88 1.35 1.3 0.87 1.07 0.77 0.59 1.05 1.12 1.17
Ours (SparseCraft) 1.17 1.74 1.8 0.7 1.19 1.53 0.83 1.05 1.42 0.78 0.8 0.56 0.44 0.77 0.84 1.04

Table 1: Quantitative results of sparse view surface reconstruction on 15 testing scenes
of DTU dataset [20]. We report Chamfer distance (lower is better). Best scores are in
bold, second best are underlined and third best are in italic.

5.1 Datasets and Setups

We follow the experimental settings in RegNeRF [45] for novel view synthesis
from sparse views (3, 6 and 9). We follow SparseNeuS [40] for reconstruction
from 3 views. More details can be found in the supplementary material. For all
qualitative figures, more examples are provided in the supplementary material.
Few-Shot Novel View Synthesis We evaluate on 15 scenes from the DTU
dataset [20]. We follow the protocol in sparse NeRF-based methods [45,64,84,88].
Following these methods, we report here the foreground metric, and provide the
full image metric in the supplementary material as-well. We report PSNR, SSIM,
VGG LPIPS scores, and the geometric average, following [45].

We relay results reported by [65,79, 84]. We mainly compare against state-of-
the-art generalizable methods PixelNeRF [88], Stereo Radiance Fields (SRF) [6]
and MVSNeRF [4] as pretrained and fine-tuned (denoted with "ft") by RegN-
eRF [45]. We also compare against NeRF-based methods that use external priors
[18,45,79], as well as NeRF-based regularization methods [64,65,84].
Few-Shot Reconstruction We evaluate on datasets DTU [20], BlendedMVS [85]
and Tanks & Temples [27]. We use the same 15 testing scenes as SparseNeuS [40]
(Please note that the DTU splits and views used for novel view synthesis and
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Object PSNR ↑ Object SSIM ↑ Object LPIPS ↓ Object Average ↓
3 views 6 views 9 views 3 views 6 views 9 views 3 views 6 views 9 views 3 views 6 views 9 views

SRF [6] 15.32 17.54 18.35 0.671 0.73 0.752 0.304 0.25 0.232 0.171 0.132 0.12
PixelNeRF [88] 16.82 19.11 20.4 0.695 0.745 0.768 0.27 0.232 0.22 0.147 0.115 0.1
MVSNerf [4] 18.63 20.7 22.4 0.769 0.823 0.853 0.197 0.156 0.135 0.113 0.088 0.068
SRF ft [6] 15.68 18.87 20.75 0.698 0.757 0.785 0.281 0.225 0.205 0.162 0.114 0.093
PixelNeRF ft [88] 18.95 20.56 21.83 0.71 0.753 0.781 0.269 0.223 0.203 0.125 0.104 0.09
MVSNeRF ft [4] 18.54 20.49 22.22 0.769 0.822 0.853 0.197 0.155 0.135 0.113 0.089 0.069
DietNeRF [18] 11.85 20.63 23.83 0.633 0.778 0.823 0.314 0.201 0.173 0.243 0.101 0.068
RegNerf [45] 18.89 22.2 24.93 0.745 0.841 0.884 0.19 0.117 0.089 0.112 0.071 0.047
FreeNerf [84] 19.92 23.25 25.38 0.787 0.844 0.888 0.182 0.137 0.096 0.098 0.068 0.046
MixNerf [65] 18.95 22.3 25.03 0.744 0.835 0.879 0.203 0.102 0.065 0.113 0.066 0.042
FlipNerf [64] 19.55 22.45 25.12 0.767 0.839 0.882 0.18 0.098 0.062 0.101 0.064 0.041
DiffusioNerf [79] 16.2 20.34 25.18 0.698 0.818 0.883 0.207 0.139 0.095 0.146 0.081 0.047
Ours (SparseCraft) 20.55 23.72 26.03 0.832 0.888 0.917 0.116 0.074 0.058 0.084 0.052 0.037

Table 2: Quantitative comparison on DTU. We present the PSNR, SSIM, VGG LPIPS
and Average scores of foreground objects. Best scores are in bold, second best are
underlined and third best are in italic.

reconstruction are not the same). Each scene is evaluated on two sets of 3 different
views. We use Chamfer distance as metric and report the average of the two
sets for each scene, similarly to [40, 58]. We use the same evaluation script as
this benchmark, i.e. cleaning the generated meshes with masks of training views
and sampling points from the generated meshes. We further test our method on
few challenging scenes from BlendedMVS [85]. We also evaluate our method on
large-scale scenes from Tanks & Temples dataset [27] using only 24 views from
the total of more than 150.

For DTU, we report the evaluation as in [37, 58]. We compare mainly against
the previously introduced conditional models [4, 88], generalizable reconstruc-
tion methods [37,40,58] as well as per-scene optimization based neural surface
reconstruction methods [46, 72, 86, 87] and the fine-tuned SparseNeuS [40] (de-
noted SparseNeuS ft). We note that the generalizable methods VolRecon [58]
and ReTR [37] do not allow per-scene fine-tuning. We also compare against
COLMAP [62].

As there is no standard benchmark for BlendedMVS [85], we use it for
qualitative evaluation. We compare against MonoSDF [89], that uses monocular
depth and normal priors, COLMAP [62], NeuralAngelo [35] the state-of-the-art
hash-based reconstruction method in the dense setting, and S-VolSDF [77], a
method that improves the performance of deep MVS through the volumetric
rendering of VolSDF [86].

We also compare our method qualitatively on the large-scale dataset of Tanks
& Temples [27] against data prior based and test-time optimization method
S-VolSDF [77], and NeuralAngelo [35].

5.2 Surface Reconstruction

As shown in Table 1, our method SparseCraft outperforms the SOTA on average
and on most scenes, even against the generalizable models that were pretrained on
other scenes of the same datasets. In particular, we show substantial improvement
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for challenging scenes with shiny objects such as scans 110 and 37 as shown in
the qualitative comparison. This showcases also that our method improves largely
on the leveraged result from MVS (COLMAP [62]), as the latter is known for
struggling with shiny/reflective surfaces.

As for qualitative visualizations on both DTU [20] and BlendedMVS [85]
presented in Figures 2 and 3, our method generates overall more detailed and
complete surfaces compared to previous methods. For instance, for scan 118
from DTU [20], NeuS [72] generates an inaccurate surface with many wholes.
The fine-tuned SparseNeuS [40] generates a relatively complete surface, but
overly smooth and lacking important details. VolRecon [58] displays more details
compared to SparseNeuS-ft, but the surface normals appear to be noisy and
inaccurate. Our method can achieve such performance while being faster than
the per-scene optimization methods (Table 6). We note that obtaining the MVS
point cloud (COLMAP) takes only 41 seconds in 3 views, 180 seconds for 9 views
in DTU. Our surfaces show more fidelity and a better trade-off between details
and smoothness. On the challenging large scale dataset T&T (Figure 4), we found
that the generalizable VolRecon [58] fails to generate reasonable outputs. Notice
that our reconstructions display more fidelity and details and fewer failures in
this large scale setting, even-though only a limited number of views is used.

5.3 Novel View Synthesis

As shown in table 2, for all input setting, we outperform the current SOTA by
a large margin in all metrics, especially in the most extreme case of 3 input
views. In fact, our method shows superior results on VGG LPIPS which is
reflected in the qualitative comparison in the 3 and 6 input-view settings 5 and 6
respectively, where our renderings appear to be more photo-realistic compared
to RegNeRF [45] and FreeNeRF [84]. For example, the red ball and shiny golden
rabbit show how our method handles well challenging light reflections, and the
example of colorful fruits shows how our method can handle high dynamic range,
all thanks to the various considerations in the design of our method, as well as
the proposed regularization for the sparse setting.

6 Ablation

For all reconstruction experiments henceforth, we show average performance over
one of the two sets of 3 views of all 15 DTU scenes. For novel view synthesis
experiments, we report average metrics on all 15 scenes of DTU. We note
that besides the ablations presented below, additional ablations are provided
in the supplementary, including the influence of MVS point cloud’s density, the
performance when varying the number of input views, several studies on design
choices related to the sampling of Taylor query points and the effect of progressive
hash encoding scheduling.
Taylor losses vs. Direct MVS supervision We compare our Taylor expansion
based geometric losses to their baselines. The input Taylor loss Ltay(p) baseline
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Applied losses Chamfer Distance ↓
SDF loss 1.34
Ltay(p) 1.17
Ltay(p) + Normal loss 1.10
Ltay(p) + Ltay(q) 1.08

Table 3: Numerical Ablation of our Tay-
lor based geometric regularization losses.

All losses × ×
Prog. Enc. × ×
Chamfer ↓ 4.11 1.16 2.56 1.01
PSNR ↑ 15.65 16.14 18.06 20.55

Table 4: Numerical ablation of progres-
sive hash encoding, and the MVS based
regularization losses.

Fig. 7: Ablation of our Taylor based geo-
metric regularization losses. We report the
Chamfer score of reconstructions.

is direct SDF zero supervision. The query Taylor loss Ltay(q) baseline is a direct
SDF gradient supervision with the normal nMVS(p). As can be seen in Figure 7
and Table 3, our proposed losses outperform the other combinations and displays
improved details and less noise in the reconstructions. This can also be witnessed
by the chamfer scores reported in Figure 7. While direct MVS supervision,
especially the normal loss, improves our baseline, incorporating this supervision
through our Taylor losses is more beneficial. We also find that the proposed Input
Taylor loss is largely superior to applying only the SDF zero supervision, which
validate our hypothesis about the benefit of enforcing linearity close to surface
points.
Ablation of progressive hash encoding Table 4 shows improvement brought
by the progressive hash encoding, and the MVS based regularization losses. We
find that while our regularization can improve surface quality, using progressive
encoding act as a regularization and helps to avoid artifacts in the reconstruction,
so that the geometry model does not prematurely overfit to fine details. In addition,
as our proposed losses are geometric in nature, they sacrifice rendering quality
at the expense of good reconstruction. Combining them with the progressive
encoding leads to superior rendering quality than using only the progressive
encoding.
Ablation of regularization losses Table 5 and Figure 5 illustrate the con-
tribution of each of our regularization losses to our final performance for both
reconstruction and rendering quality. Our baseline model in this case is our
method without progressive encoding and MVS regularization. We find that both
Taylor-based losses are crucial for learning good surfaces. Further, regularizing
the diffuse component of the color network, with MVS color labels alleviates the
issue of bias found in the rendering process of NeuS as studied in [10], and hence
improves the performance as well while enhancing rendering results even further.
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Fig. 8: Ablation of our method’s components.
We report the Chamfer score of reconstructions.

Ltay(p) × × × ×
Ltay(q) × × ×
Lcol(p) × × ×
Chamfer ↓ 1.01 1.08 1.09 1.17 1.14 2.41 4.11
PSNR ↑ 20.55 19.65 19.44 19.27 20.12 18.05 15.65
LPIPS ↓ 0.116 0.132 0.146 0.152 0.127 0.192 0.269

Table 5: Numerical ablation of our
MVS based regularization losses.

Fig. 9: Running our method with learn-
able MVS. We report the Chamfer score
of reconstruction.

Method Training Time ↓
Ours (SparseCraft) 9 minutes
Ours (SparseCraft) w/o reg. 7 minutes
SparseNeuS ft [40] 20 minutes
NeuralAngelo [35] 15 minutes
S-VolSDF [77] 18 minutes
MonoSDF [89] 1.5 hours+

Table 6: Training time on an NVIDIA
RTX A6000 of per-scene optimization
methods for surface reconstruction from 3
views.

Using learnable MVS Figure 9 shows the compatibility of our method with
other Point Clouds sources, in this case CasMVSNet [14]. Notice that our novel
Taylor losses improve over standard direct losses both when using COLMAP and
CasMVSNet.

7 Limitations

Since our method uses MVS cues, it suffers from the same limitations of the
used MVS method (COLMAP in our case); Thus, it requires enough overlap
between input images, and it may not be suitable for reconstruction of highly
non-Lambertian surfaces, for which COLMAP is known to fail. In addition, The
point cloud obtained from the MVS method have to be dense enough for more
accurate normals estimation used by our method. We showed in our experiments
how these limitations could be alleviated to some extent by using more advanced
MVS techniques such as learnable MVS.

8 Conclusion

We presented a new method called SparseCraft for time efficient learning of SDF
and radiance fields from sparse imagery. We bridged photogrammetry and deep
learning based INRs through novel regularization losses to obtain the SOTA
in novel view synthesis and reconstruction simultaneously. Through input data
requirement reduction, we hope this work will contribute towards more accessible
3D capture.
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